
TYPICAL MEMBER SPOT CHECKS FOR GRAVITY LOADS AND ALTERNATE SYSTEMS TYPICAL BAY DESIGN STUDY

Prince Frederick Hall

The University of Maryland

College Park, MD

Christopher Cioffi AE Senior Thesis- Structural Advisor: Heather Sustersic October 18, 2013

Table of Contents

Letter of Transmittal	1
Building Abstract	2
General Information	3
List of Documents Used	4
Typical Member Spot Checks for Gravity Loads	19
Alternate System- One Way Slab	35
Alternate System- Post Tensioned Two Way Slab	42
Alternate System- Steel Composite Decking	56
System Comparison	64
Powerpoint Presentation	68

The Pennsylvania State University Dept. of Architectural Engineering

Heather Sustersic Professor of Architectural Engineering 213 Engineering Unit A University Park, Pa 16802

Heather Sustersic,

The following is the technical three submittal of my structural thesis. It contains spot checks for gravity loads, and three different alternate gravity systems. It shows spot analysis of the existing two way slab and gravity checks for a typical interior and exterior column. Also this tech report shows the design of a one way slab, post tensioned two way slab and a steel composite deck for a typical bay. I hope that you enjoy reading my findings and I look forward to hearing back from you.

Thank you,

Sincerely,

Christopher Cioffi

PRINCE FREDERICK HALL

College Park, Maryland 20742

General Information

- Occupancy: Multi-use Dormitory
- Construction dates: May 2012- Aug 2014
- Approximate Size: 185,500sf
- Stories: 7 Stories, 1
 underground

Christopher Cioffi Structural Option

Primary Project Team

- Owner: The University of Maryland
- Architect: WDG Architecture PLLC
- Contractor: Clark Construction
 LLC
- Civil Engineer: Site Resources Inc.
- Structural Engineer: Cagley & Associates Inc.

Structure

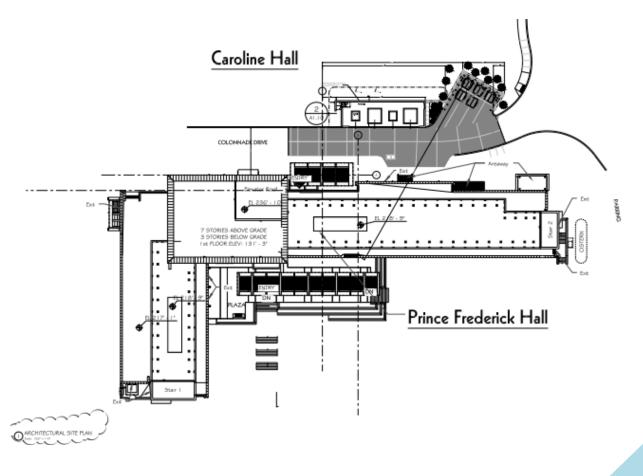
- Construction material: Cast in place concrete
- Slab System: 2-way slab with typical depth 9 inches
- Lateral System: 7 Concrete shear walls
- Columns: Multi- sized square concrete columns, rebar reinforced.
- Foundation: Mix of spread footers and strip footers.

MEP Systems

Mechanical: There are 2 roof top units and 6 air handling units. The 6 air handling units run with economizers and distribute to the VAV system for ventilation. There are also 2 main chillers for the building. *Lighting*: Lighting for public corridor spaces is controlled by occupancy sensors to reduce power consumption. Outdoor lighting system turns on at dusk to conserve as well. Typical lighting in the dorm rooms are fluorescent ceiling fixtures controlled by the occupant.

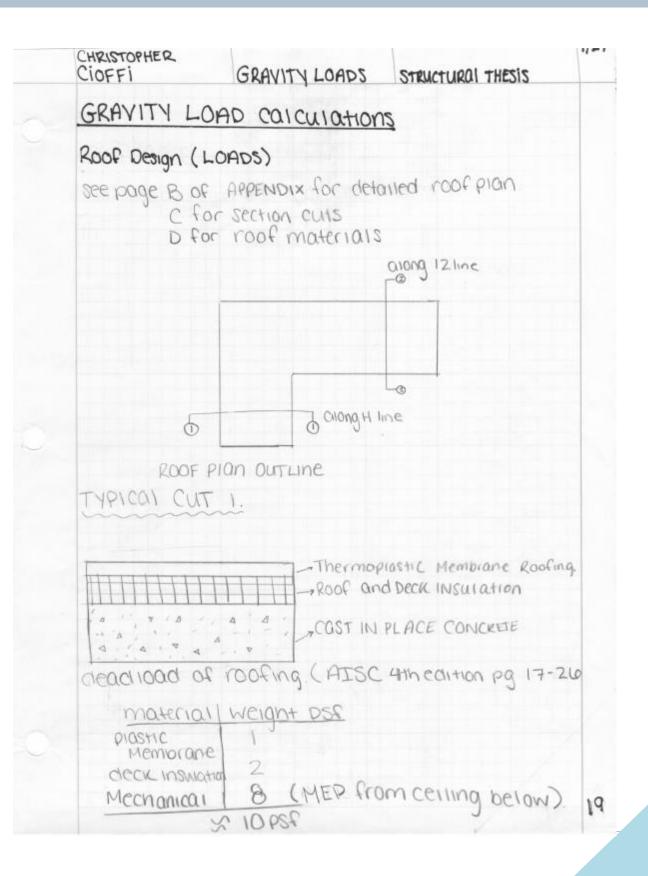
Fire Suppression: The whole building is protected with fully-automatic sprinkler standpipes. Dry stand pipes are used in areas where it can become below forty degrees Fahrenheit.

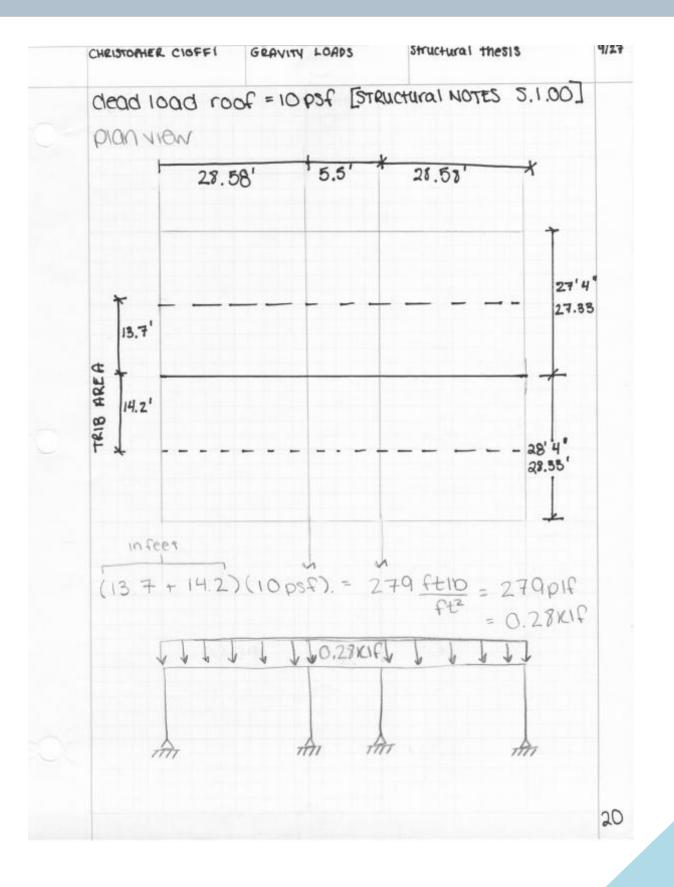
CPEP SITE: http://www.engr.psu.edu/ae/thesis/portfolios/2014/cjc5333/index.html

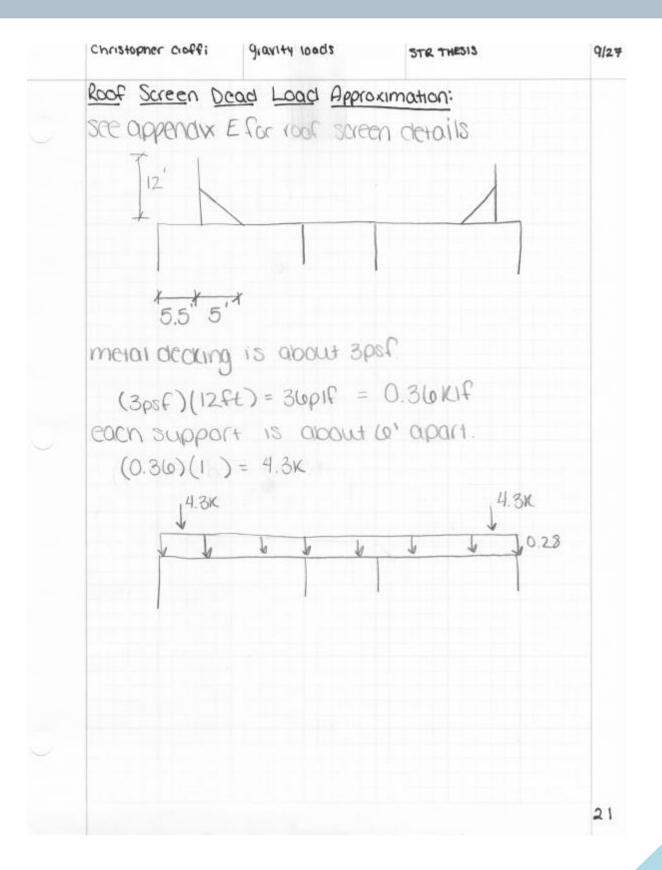


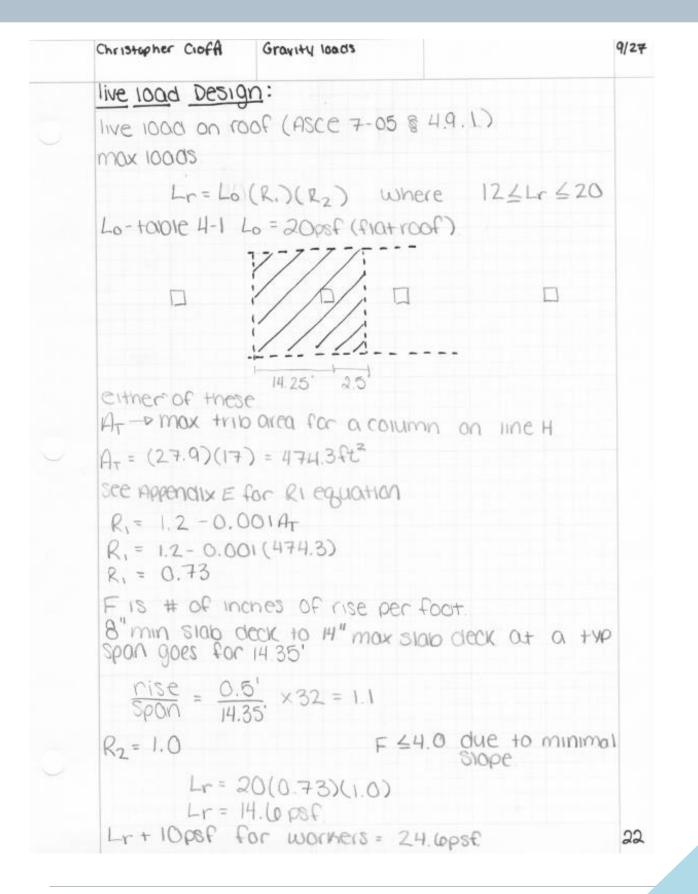
Executive Summary

The purpose of this technical report is to establish an understanding of Prince Frederick Hall's structural and existing features. Prince Frederick Hall is nestled at the heart of The University of Maryland's campus and is a multi-use dormitory building consisting of living and office spaces. This document provides an overview of all the structural components designed by Cagley & Associates Inc. including general floor framing, structural slabs, shear wall, and the foundation system. Integration of all structural components is explained and elaborated upon. The pictures and images (unless otherwise noted) are the property of The University of Maryland and WDG Architecture PLLC and are being used solely for educational purposes.

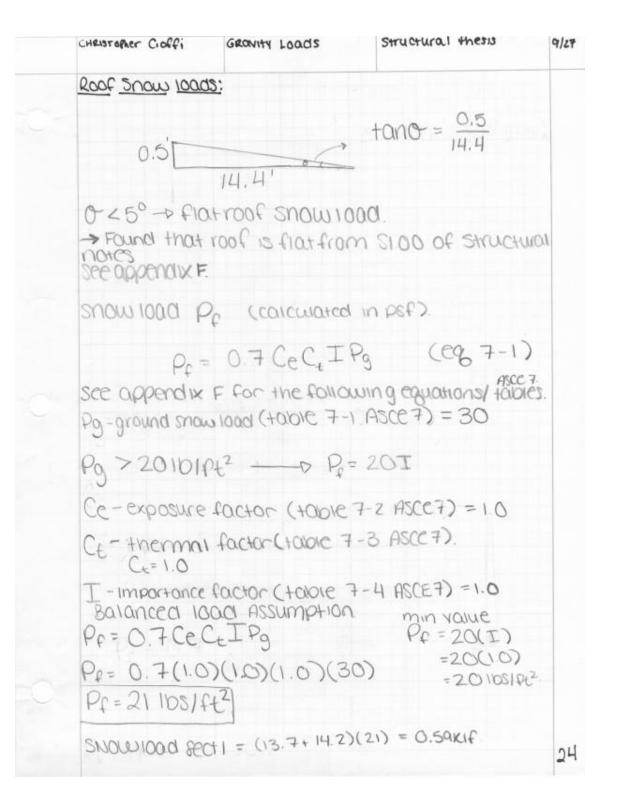

Site Plan and Location of Building

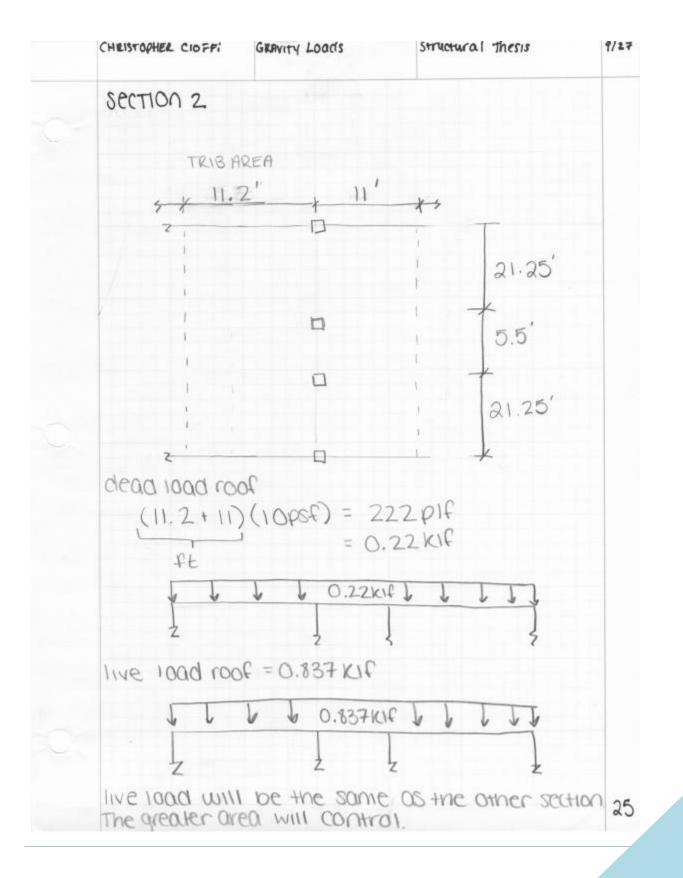


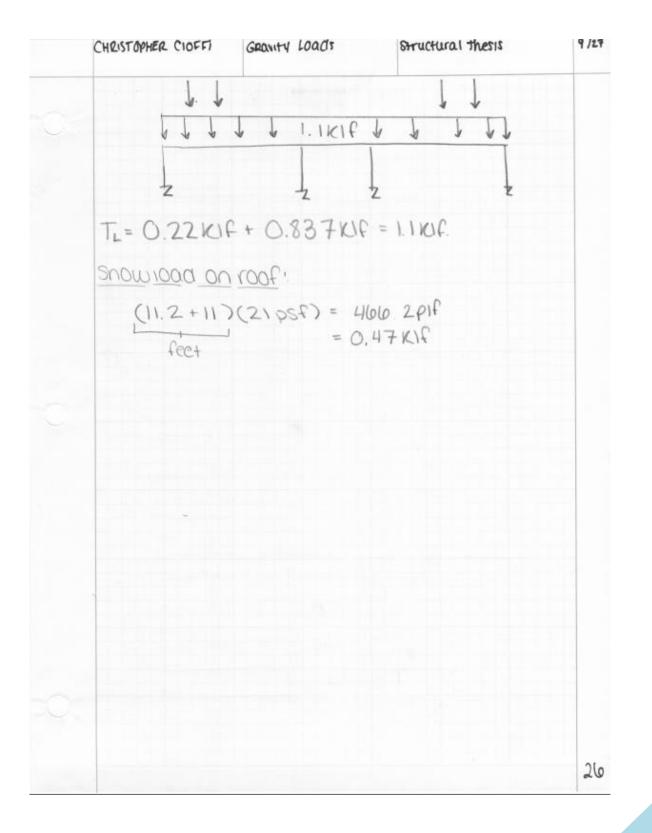

LIST OF DOCUMENTS USED

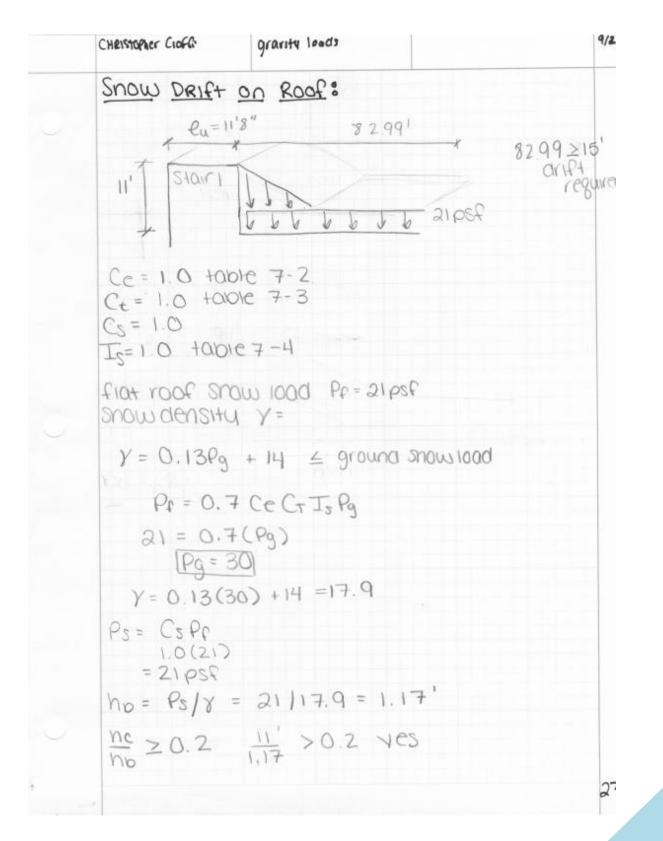

Documents Used for Analysis and Design

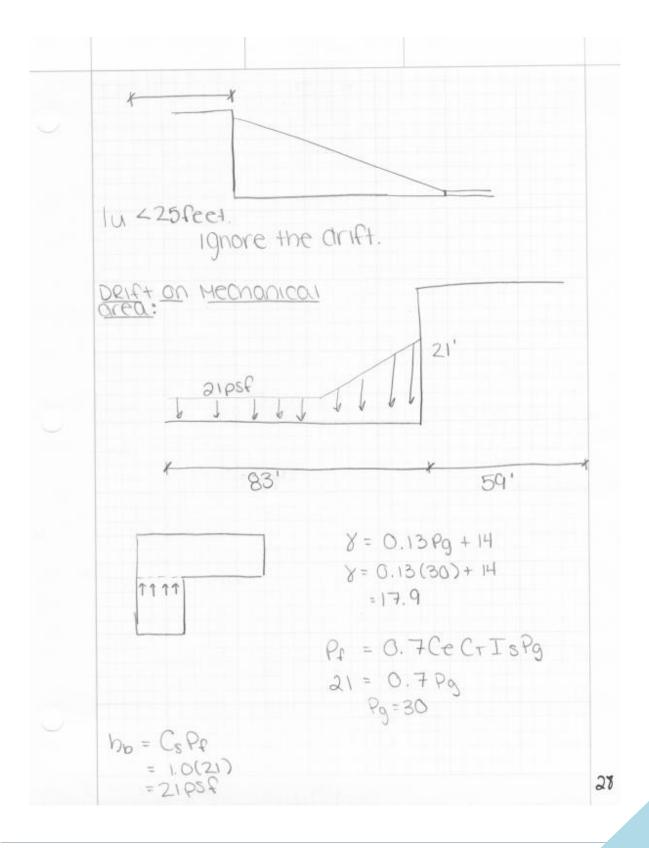
- ASCE 7-08
- ASCE 7-10
- ACI 318-08
- ACI 318-11
- AISC 14th Edition
- PCA Design Aids
- Reinforced Concrete Mechanics and Design, Sixth Edition. Wight










gravity loads 9/ZF CHRISTOPHER CIOFR IN STRUCTURAL NOTES SI.00 Roof live load -30psf min (ponding or snow load is used when greater than 30 psf) -design with 30psf (137 + 142)(30psf) = 837psffeet = 0.83761 = 0.837/1/F 23

$$h_{0} = P_{S}I_{X} = 21/17.9 = 1/17$$

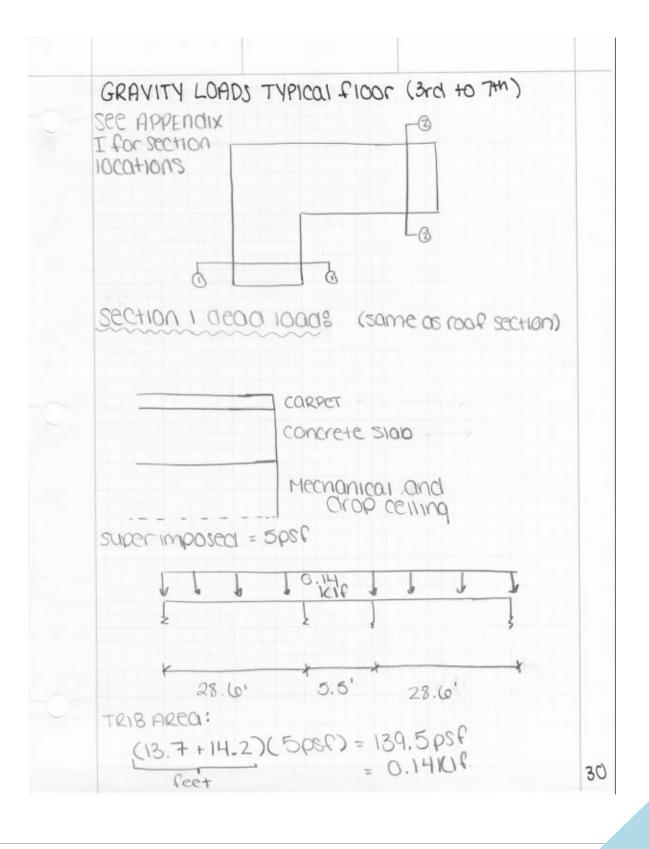
$$h_{C} = 0.2 \qquad 20 \qquad h_{T} = h_{C} + h_{0}$$

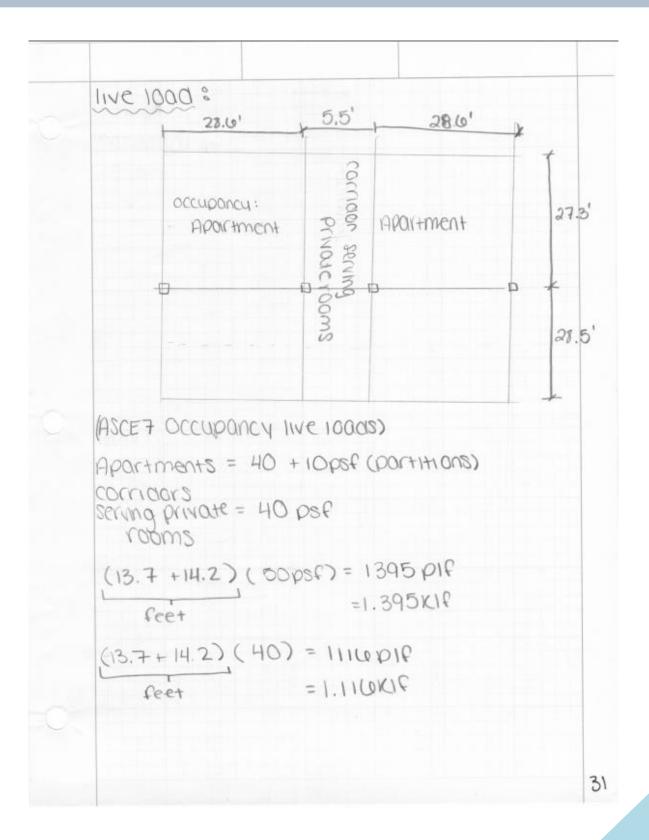
$$h_{0} = 0.75 (0.43 10^{1/3} (P_{0} + 10)^{(1/4)} - 1.5)$$

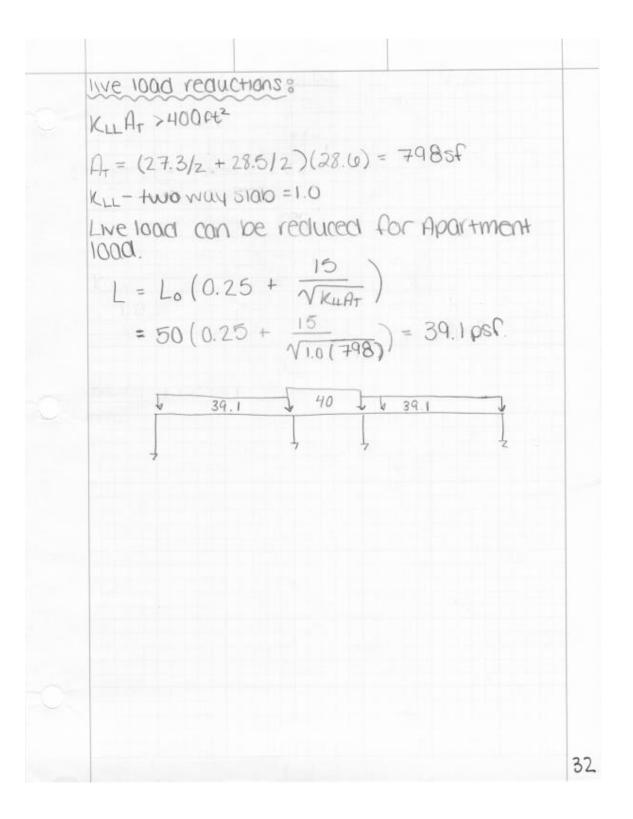
$$h_{d} = 0.75 (0.43 10^{1/3} (P_{0} + 10)^{(1/4)} - 1.5)$$

$$h_{d} = 2.44t$$

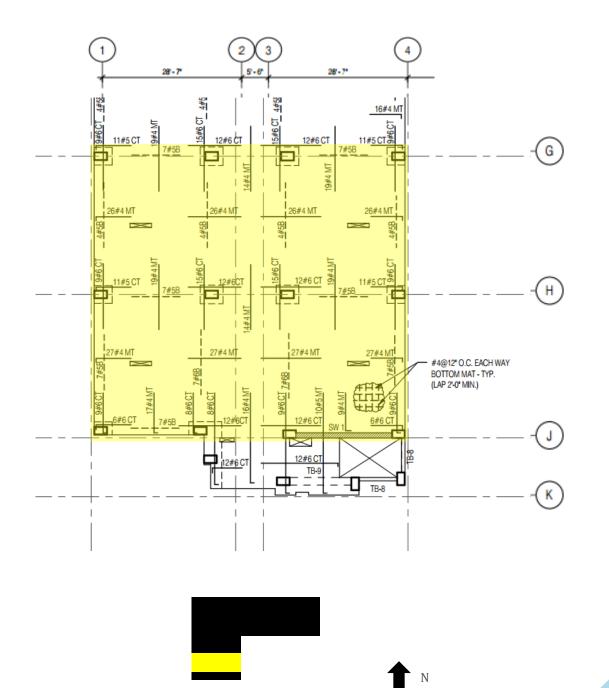
$$W = 41(2.44t) = 9.06teet$$

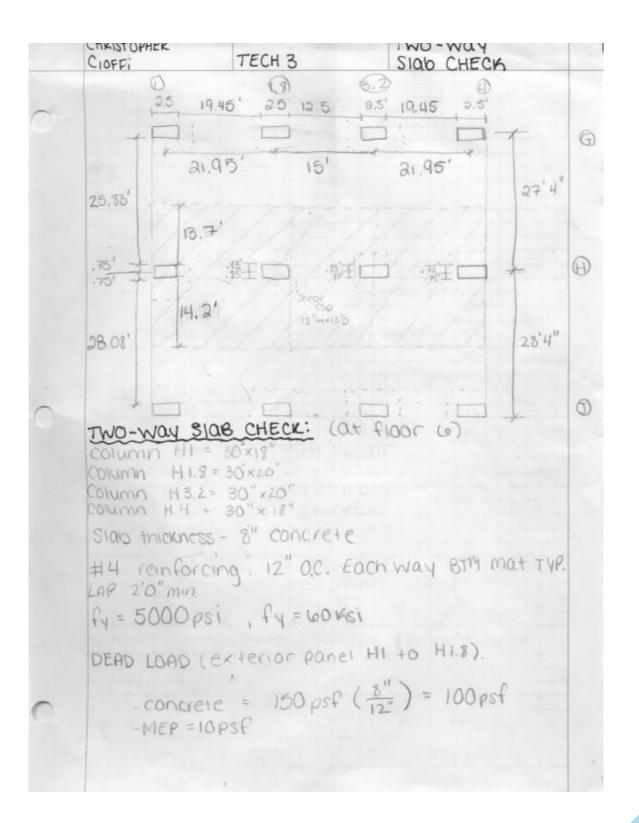

$$P_{d} = h_{d} X = 2.4(17.9) = 43ps$$

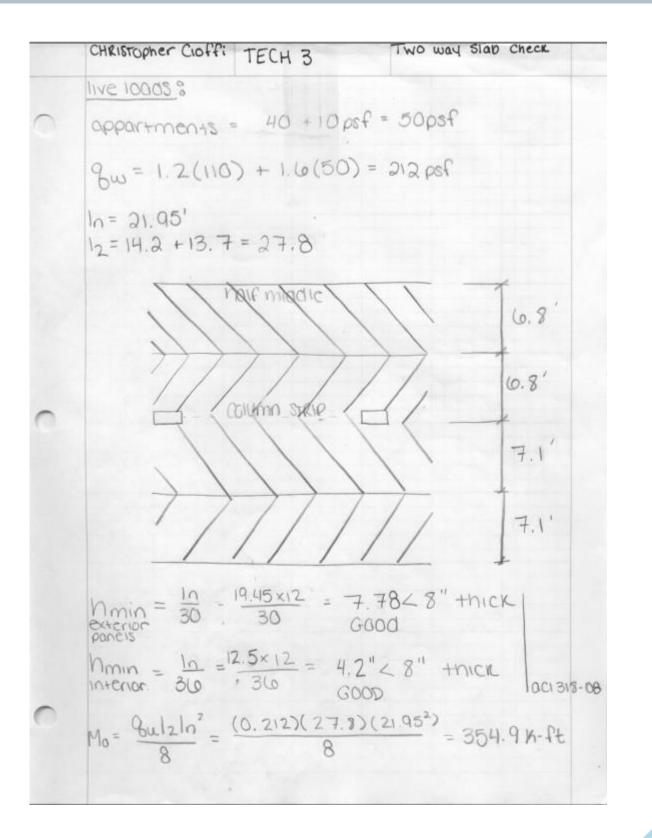

$$P_{d} + P_{f} = 43 + 21 = (04ps)$$


$$Qrodient = P_{d} = \frac{43}{9.6} = 4.5$$

$$Qrodient = P_{d} = \frac{43}{9.6} = 4.5$$


$$Qrodient = \frac{P_{d}}{W} = \frac{43}{9.6} = 4.5$$




Typical Floor Bay Being Analyzed

TWO-WAY SLAB SPOT CHECKS

TWO-WAY SLAB SPOT CHECKS

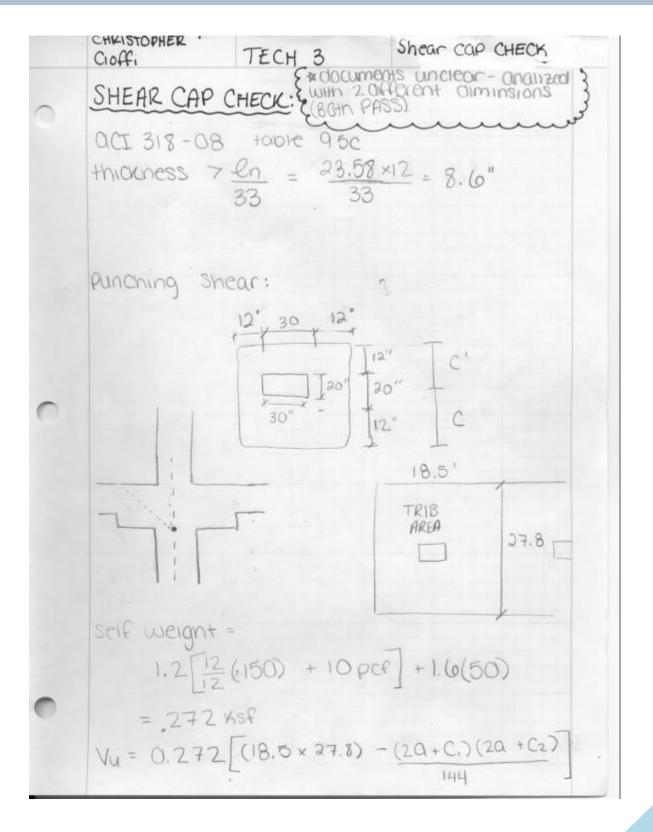
TWO-WAY SLAB SPOT CHECKS

	Christopher Cioffi	TECH3	Two way slab Check
	positive and ne		
0	M(inierior) = 0	$.7M_{o} = 0.7$	(-354,9) = -248.46 'N
	Mt = 0.52Mo =	0,52(054.4)	= 184.55 h
	M (exterior) = (),26(Mo) =	0.26(-354.9)=-92.27 h
	COILIMN STRIP	moments:	
	$\frac{l_2}{l_1} = \frac{27.8}{21.95} =$	1.27	
	$\alpha_{F_1} \stackrel{\ell_2}{\underset{\ell_1}{\underbrace{\ell_2}}} = 0 \rightarrow$	no beams pai	rallet to H.
	Manterion = 0.7	-(-248.46)=	-174.13 h
	M= 0.6(184.5		
0	M(exterior) = 1.0 (-92.27) = -	9227'n
			$e = \frac{E_{CB}C}{2E_{CS}T_{S}} = 0$ no exterior beam.
	middle smp m	oments:	
	Mantecion) = 0.3		74.54
	M= 0.4 (184,55	5)= 73.82	
	Mexician = 0		
	COlumn STRIP	00	
	0=(7.1+6.3	$) \times 12) = 10$	06.8
-	n= 8" thick		
0	d = 8'' - CLRC	over- zbo	r diameter
	= 8" - 1.0 - =	z(0,5) = 6.	75

TWO-WAY SLAB SPOT CHECKS

Two-way slab check Christopher Clotti TECH 3 $E_y = \frac{E_c}{c} (d-c) = \frac{0.003}{0.823} (0.69 - 0.823)$ = 0.21 20.005 = 0.21 70.005 J=0.9 TMn= TASFy (d - S) =0.9(7.77)(00)(0.69-0.823)= 2634.33/12=219.53 K 219.53 h > 110.73 h GOOD Reinforcing for end column Strip; $A_s = 28(0,2) + 7(0.31) = 7.77$ $\begin{array}{l}
\Omega = \underbrace{A_{5}F_{Y}}{0.85F_{C}D} = \underbrace{(7.77)(00)}{(0.85)(5)(1008)} = 0.60
\end{array}$ $C = \frac{0}{8} = \frac{0.00}{0.8} = 0.725 \quad cl = 6.69$ $E_{4} = \frac{E_{c}}{c} (d - c) = \frac{0.003}{0.953} (6.25 - 0.825)$ $G = \frac{0.003}{0.953} = 0.014 \quad > 0.005$ G = 0.9Oth= DASFY(0-92) =(0,9)(9,01)(00)(0,025= 0.953/2) =2991.5112=249.3 K -249.93 K7 -92.27 K good

TWO-WAY SLAB SPOT CHECKS


Christopher Cloff: TECH 3 Two way Slab check

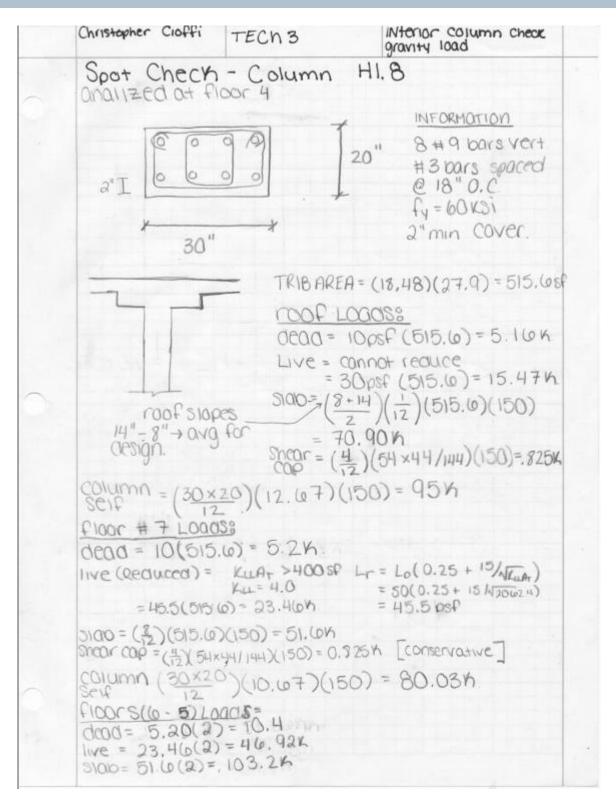
$$\frac{40}{806} = [(0.8 \times 2) + (7.1 \times 2)] \times 12/12 = (2.8)$$

(28) #4 @12" on Bottom
Reinforcing for Interior Column Strip:
As = $28(0.2) + 7(0.31)$
= 7.771n²
 $0 = \frac{AsFy}{6} = \frac{777(00)}{(0.15)(5)(100.8)} = 0.000$
 $0.85FCD = (0.15)(5)(100.8) = 0.000$
 $C = \frac{0}{8} = \frac{0.006}{0.8} = 0.825 \quad d = 8^{*} - 1.0 - \frac{1}{2}(0.025)$
 $C = \frac{0}{8} = \frac{0.006}{0.8} = 0.825 \quad d = 8^{*} - 1.0 - \frac{1}{2}(0.025)$
 $= 0.014 > 0.005 \quad d = 0.9$
 $IA5 = 0.014 > 0.005 \quad d = 0.9$
 $IMh = IFAFy(d - \frac{C}{2})$
 $= 0.9(10.88)(00)(0.025 - 1.1512)$
 $= 2991.5/12 = -249.3$
 $-249.30'K > -1744.13 \quad good \checkmark$
Reinforcing for center column Strip:
 $As = 28(0.2) + 7(\frac{0}{5}31) = 7.771n^{2}$
 $0 = AsFy = \frac{9(777)(00)}{0.85(0)(100.8)} = 0.058$
 $0.350'CO = (0.850(0)(100.8))$
 $C = \frac{0}{6} = \frac{0.057}{0.8} = 0.823 \quad d = 8^{*} - 1.0 - \frac{1}{2}(0.025)$
 $= 0.09''$

TWO-WAY SLAB SPOT CHECKS

 $E_{y} = \frac{\mathcal{E}_{c}}{C} (d-C) = \frac{0.003}{1.15} (6.25 - 0.8225)$ = 0.014 $\Phi M_{n} = \Phi A_{5} F_{y} (d-C) = \frac{0.003}{1.15} (6.25 - 0.8225)$ = 0.9(10.88)(00)(0.025 - 1.15/2) -249.3 K > -174.13 good / delitive repar Column H1.0 Exterior TYP PANEL PASSES ALL Moment Cheeks.

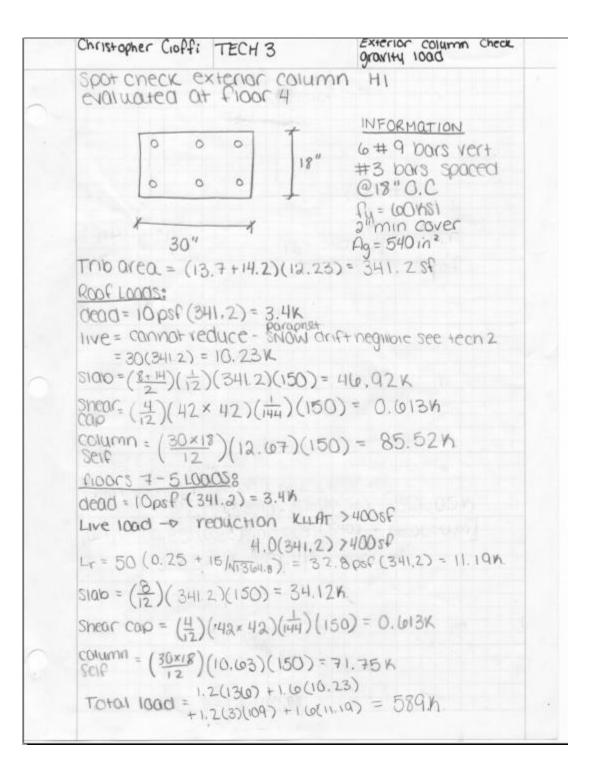
SHEAR CAP CHECK


SHEAR CAP CHECK

Christopher Ciaffi TECH3 Shear cap Check

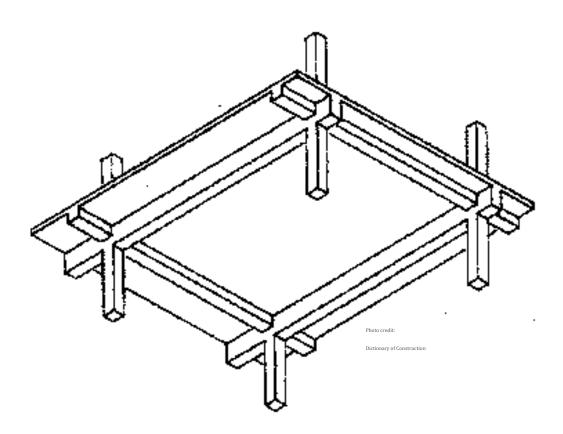
$$V_{u} = 0.272 [514.3 - (44 \times 54/144)] = 135.4 \text{ n}$$

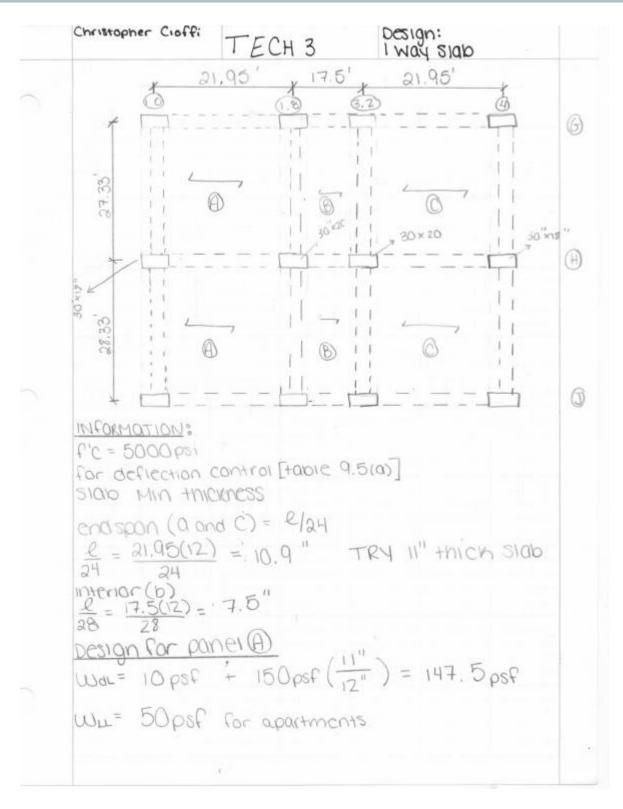
 $b_{0} = (54 + 44) \times 2 = 19(0 \text{ in}$
 $V_{c} = \begin{bmatrix} 2 + 4/8 \\ \frac{a_{5}d}{b_{0}} + 2 \\ 4 \end{bmatrix} 2\sqrt{F^{2}c b_{0}} d$
 $V_{c} = (2 + 4/(3020))(\sqrt{5000})(19(0)(7.25) - 468.91)$
 $V_{c} = (40(7.25) + 2)(\sqrt{5000})(19(0)(7.25) - 349.63)$
 $V_{c} = 4\sqrt{5000}(196)(7.25) = 401.92^{16}$.
 $\overline{D}V_{c} = 349.63 \times 0.75 = 262.2^{16} \times 135.4^{16}$
Stab 13 Orbay for punching Shear


SHEAR CAP CHECK

Christopher Cioffi TECH 3 Shear Cap Check Shear caps thickness > $\frac{10}{33} = \frac{23.58 \times 12}{33} = 8.6$ PUNCHING SHEAR: 20 6 ¥ × 6 36 self weight = $1.2\left[\frac{12}{12}(150) + 10\right] + 1.6(50)$ = 0.272Ksf TRIBAREA = (18.5)(27.8) = 514.3 Vu= 0.272(514.3- (32×42)/144)=137.4K bo= (32+42) ×2 = 148in -= NFic bod $V_{C} = \begin{bmatrix} 2 + 4/B \\ \frac{\alpha_{s}d}{bo} + 2 \end{bmatrix}$ A'cbod =15000(148)(7.25). = 75872.6 = 2 + 4/30/20 (4)(75872.6)/1000 = 40(7.25)+2 = 303.5 K = 4 -> controls DVC= 303.5 (0.75) = 227.62 K>137.4K Oray for punching shear of

Christopher Cioffi	TECH 3	gravity Load
Shear cap = 0.2 column = 80.02 SELF		
+ 0,		825 +95 + 10.4 +51 6 51.56 + 103.2 +]
	47+23.46+	
IPA = 0.8I	0.85 F'C(A	g-Ast) + fyAst]
= 1296	.3K 1296.3 KIPS	900d × (8 - 000
f_{100} created = 10(515) $d_{00}d = 10(515)$ $f_{10}e_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$ $f_{10}e_{10}e_{10} = 45$	2000 (a) = 5.2.4 (b) = 5.5(5) (c) = 5(0) (c) = 5(0) (c) = 5(0)	13.46
1.2(2)(137.0)(23.46) = 405.5 1.7K
$TP_n = 0.8 T$ = 0.8(0.0	[0.75 F'C(Ag	
= 1557 1244 7621	,92 557.92 ga	vod 🗸
in he to make		

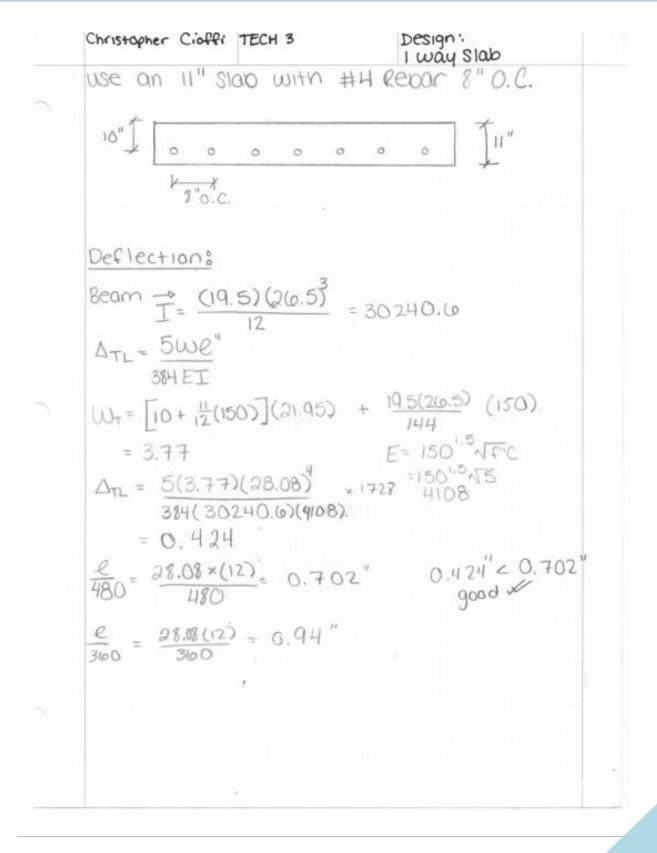

Christopher Cioffi	TEOH3	interior column check, gravity load
analized at f	F1000 1:	
57.63+213 ¹² Total 10005 =	PIOGRS Except 39(150)(19)= 270.04 1.2(270.0)+1.	(0(23.46) + 1244.7 = 100000000000000000000000000000000000
= 2531.	76	5)(900-18,72)+60(18,72)]
1606 16 <2	2531.74 9	200 W
$S1QD = (2_{12})(515.)$ COlumn 821f = (3) drop panel = (6.2)	.(0) = 5.24 5 + 15/47002 (0)(50) = 51.1 (220)(13)(15 5×10)(150)(4	0) = 14(0.3K) 11(2) = 3.125K
= 14	1606 + 1.2 006 + 206.5 901.34	(206.2) + 1.6(29.92) 5 + 47.87
IRn= 0.8 (0 = 2531.7). 65)[0.85(5] 7N)(900-18.72) + 60(19.72)]
1901.34	<2531.7M	



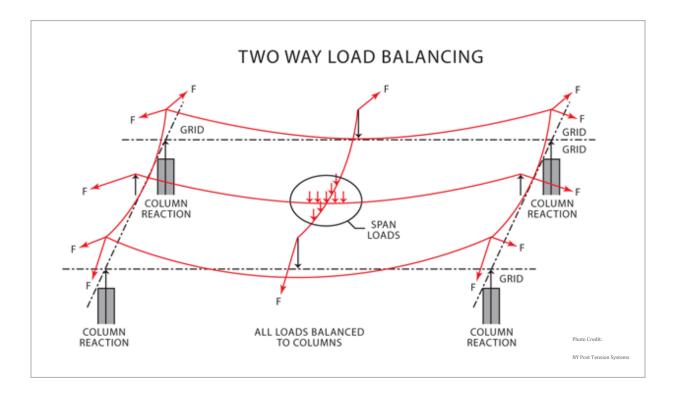
Christopher Cloffi	TECH 3	Exterior column check growity load
IPn = 0.85(0 = 815.5		540) - 60(6×10)
589 <8	315.54	
evaluated at	F1005 28	
floors 4 - 3 Loodead = 10 psf (3)live = 32.8(34)	341.2) = 3.41N	
SIDD = (8/12)(34)	12)(150) = 34.12	X
Shear= (4/12)(4)		
$\frac{\text{column}}{\text{self}} = \left(\frac{30 \times 10}{12}\right)$	[₹])(10.63)(150) = 71.75 K
= 885 DPn = 0.85(0. =1000.	8K .(65)[0.85(5)(1 1K	09.99) + 1.6(2)(11.19) 540) - 60(6×1.0)]
	121069.1 h	good w
$\frac{evaluated}{at} \frac{1}{4}$ $\frac{dead}{3} = 3.41 \text{K}$ $\frac{1}{10} \text{K} = 11.19$ $\frac{3}{10} \text{K} = 34.12 \text{K}$ $\frac{3}{10} \text{K} = 0.61$ $\frac{30 \times 16}{12}$ $\frac{30 \times 16}{12}$	134	128.5%
TOTAL 1000 = 9	388 + 1 2(160) 5)(0.95(5)(540) + 1, 6(11.19) =1105h
	*	

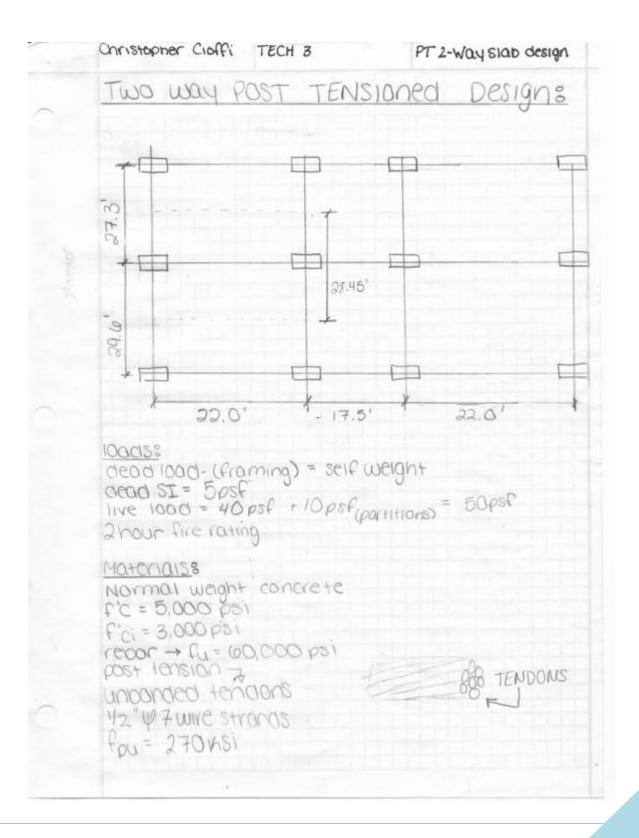
	Christopher Cioffi	TECH 3	Exterior column check. gravity load	
	evoluated at a	pround's	1.2	
7	13 Floor Lood 2 OCOO = 3.41			
	7100=4312		= (65.6(341.2) = 22.3K.	
	0,000 = (5,5)(10	の(川に)(声)(150) = .19K.	
	$\frac{\text{PODEL}}{\text{Column}} = \left(\frac{\text{COLLE}}{12}\right)(13^{\circ})(150) = 87.7\%$ $\frac{\text{Column}}{\text{Self}} = \left(\frac{12}{12}\right)(13^{\circ})(150) = 87.7\%$ $\frac{1000}{12} = 810.2 \times 12(522.5) + (1.6)(22.3).$			
	1478 < 1069. IK NOT GOOD			
	column failed test			
	-was too conservative with concrete weight - Shear Caps. - too conservative in general			
		,		
	r.			
		1		


Alternative System: One Way Slab Design With Reinforced Beams



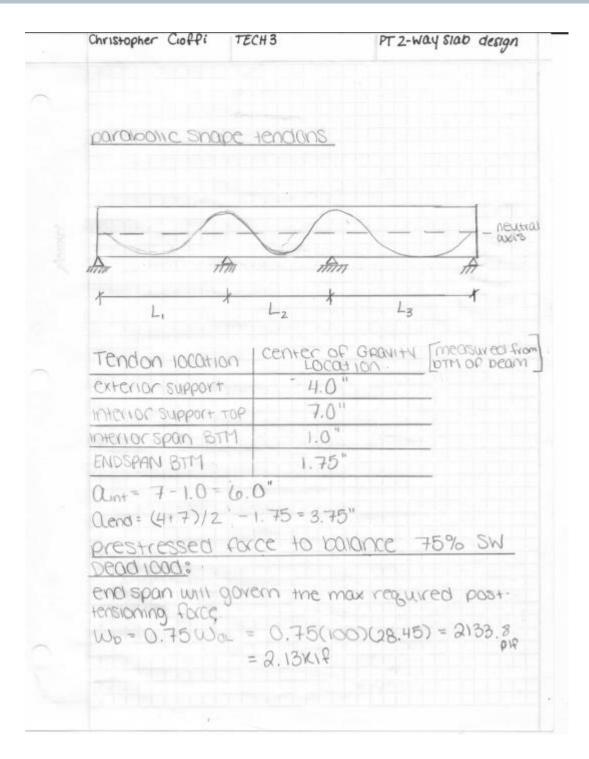
	Christopher Ciotil TECH 3 Design: 1 Way Slab
	LOOD COMPUNATION (ASCE 7-10 § 8.3.2) 1.20 + 1.6 L -> CONTROIS
	$W_{\tau} = 1.2(147.5) + 1.6(50) = 257psf$
	TRY #4 bars $d = n - ciear - \frac{d_{44}}{2} = 11'' - 1.5 - \frac{0.5}{2}$ d = 9.25''
	beam design: [1.06 - 10H]
	W= (257)(21.95)/1000 = 5.64 K/F6
	$Mu = (5.04)(28.33 - (\frac{18}{12}))^2 / 8 = 507.5$ $507.5 \times 1.1 = 558.25 \frac{1}{12}$ $2 = 507.5 \times 1.1 = 558.25 \frac{1}{12}$
	$beamsize \rightarrow bd^2 = 20 Mu$ $b = \frac{4}{5}d = \frac{4}{5}d^3 = 20(558.25)$ d = 24''
	$b = \frac{4}{6}(24)$ = 19.2 \approx 19.6" n = 24 + 2.5 = 26.5
	$W_{SEV} = \frac{2(0.5(19.5))}{144} \times (150) = .538$
	Wu= 5.64 + 1.2(.538)= 6.29h
5	$Mu = ((0.29)(2(0.8))^2 = 5(04.7)^{\prime}h$
	$bd^2 = 20 Mu$
	(9.5)(242) = 20(564.7) 11232 < 11294 = good


Christopher Ciaffi TECH 3	Design: I way 51010	
Required Steels		
$As = \frac{m_u}{4d} = \frac{564.7}{4(24)} = 5.8$	in ²	
TRY 6 ± 9 rebar = ($\omega \times 1.0 = \omega in^2$	
d = 26.5" - 1.5 cm - 1.28	= 24.30	
nominal moment		
$0 = \frac{1}{92 \text{ fr}} = \frac{0.82 \text{ fr}}{(0.0000)} = \frac{0.82 \text{ fr}}{(0.0000)} = \frac{0.82 \text{ fr}}{(0.0000)} = \frac{0.82 \text{ fr}}{(0.00000)} = \frac{0.82 \text{ fr}}{(0.000000)} = \frac{0.82 \text{ fr}}{(0.0000000000000000000000000000000000$	= 4.34″	
C= a/B, = 4.34/0.8 = 5.		
$\mathcal{E}_5 = 0.003 \left[\frac{24.36 - 5.42}{5.425} \right]$	= 0.01047 >.005 OKay	
use $\phi = 0.9$		
0 Mn= 0.9(As)24)(0-9	12)	
= 0.9 (6.07 (60) 24.36 - 4.34/2) = 7189.6112 = 599.13 h		
CMn > Mu	19.10 11	
599.137588.25 OKAY		
min area of steels		
$As_{min} = \frac{200}{fy} bd = \frac{200}{60,000} (10)$	1.5)(24.36) = 1.58 m	
As = 6102> 1.58in 2 good		
check max reinforcing	10410:	
$P_{max} = 0.85 B_1 (f'c/f_1) (E$		
= 0.85(0.8)(5160)(0. = 0.0213 .	.003/0.003+0.005)	

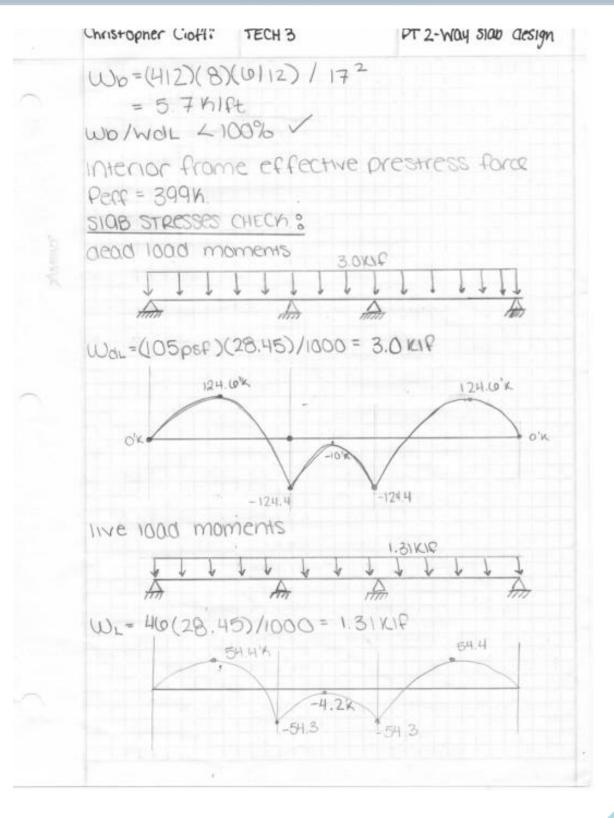


Christopher Cioffi		lway slad	
Control distance from Cc - tension recor to norest Surface S	= 15 (40,00) $= 8,125"$ $= 12 (40,00)$ fs	$\frac{20}{100} - 2.5 C_{c}$ $\frac{20}{100} - 2.5(0.75)$ $\frac{20}{100} = 2.5(0.75)$ $\frac{20}{100} = 2.5(0.75)$	
TRY #4 report $A_{s} = 0.20 \text{ in}^{2}$ $Z \times 0.2 = 0.3$ $C = A_{s}/bd = 0$ $a = A_{s}fy$ d = 11'' - 0.75 $\overline{a}M_{n} = \overline{a}A_{s}fy$ 0.9(0.3)	$\frac{10^{2}}{f_{t}}$ $\frac{1.3}{(12^{"})(11^{"})}$ $\frac{1.3}{(0.3)(00)} = 0.35(5)(12) = 0.35(5)(12) = 0.5 = 10(0-5) = 10(0-5)$ $(0-0/2)$	= 0.0023 0.353	
	50)(1') + 10 1F 21.95) ² = 15	= 13.20 K-ft psf(1')]+1.6[50(1')]	

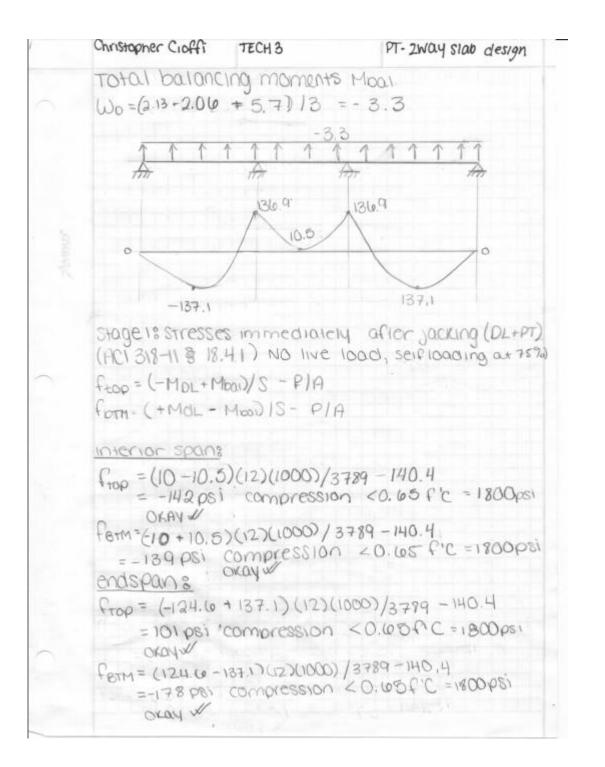
Alternative System: Two- Way Post Tensioned Slab Design

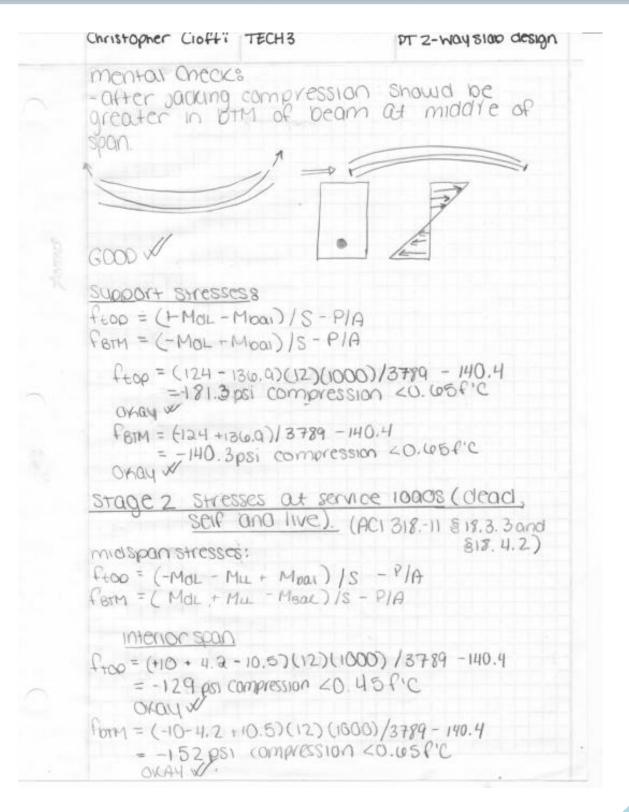


	Christopher Cioffi TECh3	PT 2-Way slob design
_	estimated prestvesses lo =15 KSI	ISSES (ACI 318-11 \$18.6).
	$\begin{array}{l} F_{se} & (AC1 313-11818.5.1) \\ at an encrorage devices and after force transfer. \\ f_{se} = 0.7 fpu = 0.7(270) \\ = 174 NS1 \end{array}$	
	$P_{eff} = A_{pr} \times f_{se} = 0.153$	$m^{2}(174451) = 26.64/tendor$
	determine preliminary	SIDIO thickness:
	$\frac{L}{n} = 45 \qquad n = 2$ longest span = 20.0 Pt	19.(0(12)/45 = 7.89" USE 8" SIAD
	$\frac{LOQDS}{W_{dL}} = \frac{(2^{"})(150)}{12} = 100$	psf
	$W_{DaL} = 5psf$ $W_{L} = 50psf$	
	Live 1000 reduction \rightarrow $K_{LL}A_T \ge 400 \text{ Ft}^2$. $K_{LL} = 1.0 \text{ (toble 4-2)}.$	(ABCE 710 8 4.7.2).
	$extender bay:A_T = (13.65 + 14.8)(22).= 625.9L= Lo(25 + 15/T_{K_{W}A_T})$	$H_{T} = (13.65 + 14.8)(17.5)$ = 497.9 L = Lo(0.25 + 10/NK40AT)
	= 42.5psf	= 460 psf


	Christopher Cioffi	TECH 3	PT 2-Way slab design
	Section Propert		
-	design class:		
	for uncrache	d (318.3.4)	
	A= bh = (29.0)(12)(8)=2	842 in2
	$S = \frac{100^2}{10} = 1000000000000000000000000000000000000$	$0(12)(8^2) = 3$	789in3
	set design par	ameters	
	allowable st	resses : CIOS	s U
	at time of JD f'c = 3000psi		
	Compression: (Tension : 31pc)	(\$19.4.1) = (= 3.13000 =	1.68°Ci = 1800psi 104psi
	at service 10 f'c = 5000psi	ads_	
	compression · (ACIE)	901818.4.2.(0.0) $8.3.37$ $f_{\pm} \leq 60$	$(na_{10}) = 0.45f'c = 2250;$ $Fc = 6\sqrt{5000} = 424ps;$
	Average prec	compressio	a limit:
	P/A = 125ps	(min)	ACI \$ 18.12.4
	300 p	si (mox)	
	Target load to	alances:	
	60-80% OF C Used 75% ,	incert weigh	
	0.75(10)	(1) = 0.7(100)	() = 75 psf
	COVER require	ments: (T	EBC 2012)
	unrestrained	$S10,05 = \frac{1}{2} \frac{1}{2}$	BTM Restrained = 3/4"BTM. TOP

PT TWO WAY SLAB

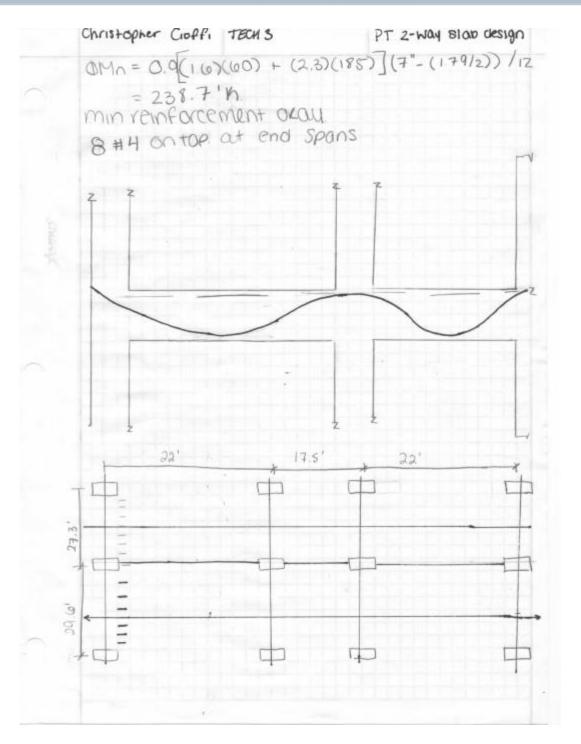



	Christopher Cioffi TECH 3 PT 2 way slab design
~	force needed in tendons to counteract load in end bay P= Wb L2/80.end
	P= 2.13(22) / (8(3.75/12)) = 412/11ps
	<u>Check precompression allowance</u> determine # of tandons
sound	$\pm \text{ or tendions} = 412/(26.6)^{-7} = 15.5$ Use 15 tendens - rounded down - compensation late
	QC+UQI = (15 + endors)(20.0) = 399 H
	The balanced 1000 for end spon (adjusted)
	Wb = (399/412)(2.13) = 2.00%/Pt determine Octual precompression stresses
	$Poctuoi/A = (399)(1000)/2842m^2 = 140.4psi$
	140.4 > 125psimin Vokay < 300psi max Vokay
	<u>Check Interior Span force</u> : $P = (2.13)(17.5^2)/(8(112)) = 163Kips$
~	16316 L' 412 KIPS 1855 Force is required in the interior span.
	For simplicity, force required for end spans will be continued into interior span

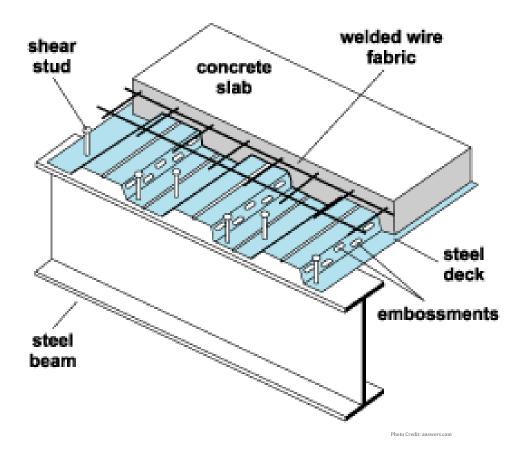
PT TWO WAY SLAB

PT TWO WAY SLAB

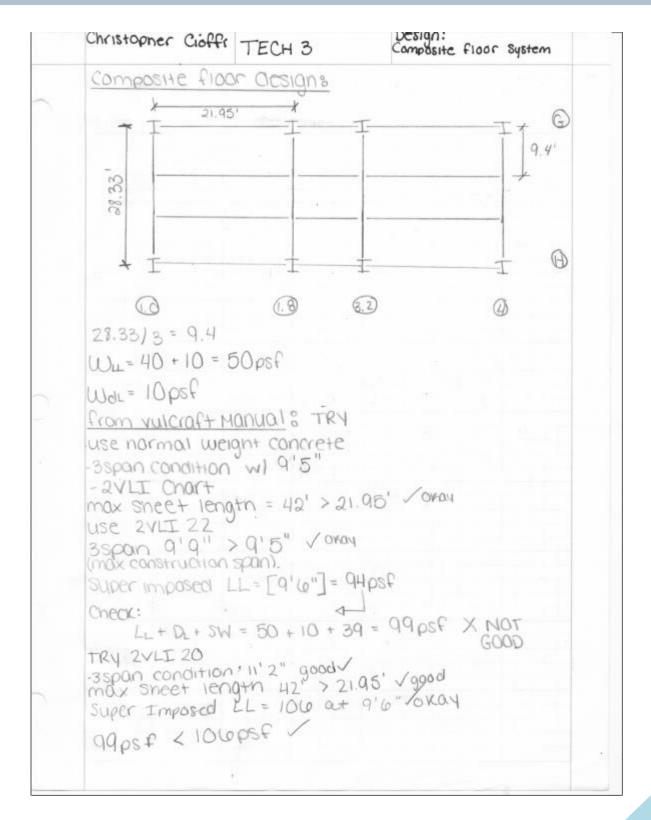
PT TWO WAY SLAB


(Christopher Cioffi	TECH 3	PT 2-Way slab design
	= - 27 Onay ** fom = (124	13 psi comp	-137.1)(12)(1000)/3789-140.4 pression < 0.45f°C 37.1)(12)(1000) 13789-140.4
2	Oriay Support Stresses FLOP = (Mal + 1 Potm = (-Mal - M	5 Mil – Mear)/ Li +Mear)/.	S-P/A
	0404 - (-124-	04.3+136.9	9)(12)(1000)/3789 - 140,4 1855107 <0.6587C)(12)(1000)/3789 - 140.4 101855107 <0.6587C
5	DII STRESSES (limits. ULTIMOte Str	rength :	oments s, M., vary along the
	$M' = 6 \times 6$	2 Spain. *0	Acr socing
	e = Oin at extern Suppor e = Bin at intern Neutral axis	(1	* KNOON.
	M, = (412)(3.(

Christopher Cloffi	TECH 3	PT 2-Way slab design
the secondaru Vary Lineariu	post tension between si	ing moments, Macc, apports
Msec = Mpa	1-M.	
	9-103 = 33	9'n
ex com	+ color Int Color	evredim
		/
the typical 10	od compinati	on for whimase
strength desig		
Mu= 1.2 Mar	+ 1.6 Mil + 1	. O Msec
at miaspan		
= 1.2(12)	1.6)+1.6(54.4	4)+1.0(33.9)
= 270.		
at support	~	122 - 1 (123 Q)
		54.3) + 1.0(33.9)
= -282		reinforcement.
negative mor		
		21 318-11 89.3.37
interior suppor	158	
Ace = max. (9	lin)(22+17.5))(12)
$A_{s_{min}} = 0.000$	75(1896) =	1.4 m²
1.4/0.2 =	+	
7 # 4 bar	'S TOP	


	Christopher Cioffi	TECH 3	PT 2-way stab design	
	exterior suppor	15:		
~	$A_{cr} = (8)(2212)(12)$ = 0.00075(1056) = 0.792in ² 0.79210.2 = 4 #4 BORS (As = 0.8in ²).			
	on each side (of suppor	1/10 the clear span t (\$18942) in each direction	
	foce of the (\$ 18.9.3.3)	support (sh away from In each side	
2	=1.5(8") max bar space	y = 12'' mq = 12'' ((ACI 318-11818.9.3.3)	
	Check Min re for witimate		it if it is sufficient	
	Mn = (Asky + AF d=effective der		1/2)	
	Aps = 0.153102(15.tendons?	= 2.301n2	
	fps = fsc + 10,00 with 4/n > 35 (1/300 Aps for sides	
	=(174,000)+	10000 + (50	00(28.45)0/(300(2.3))	
	1.	84000 + 200	2.2.d	
	Q = (Asfy + Ap	5fs)/0.85()°c/o	
	Publicit			

	Christopher Cloffi	TECH 3	PT 2-Way Slab design
-	0+ supports 0= 8''- 3/4''-' $f_{ps} = 184000 +$ 0-V(1+1)(100) +	20(0.2(7) =	= 185443.4psi)/ 0.85(5)(28.45(12))]
	= 0.35 OMn = 0.9[(1.40	wa)) + 2.30	(185)](7"-((0.35)/2)]/12
	strength requir	60.8 reinfo	reament for ultimate
	Asreg= 1.4 in2		
~	Interior 7 #	= 4	
	exterior 4 #	4	
	$\frac{mlospans}{A_{smin}} = 0.000$	75 Ace	
		345(2112)	
	= 1.510 8#4 (As= 0= 8"-1'12-	1/4 " = (0 ,14"	
	fps = 184000 # = 185288 p		
			10.85(29,45)(12)

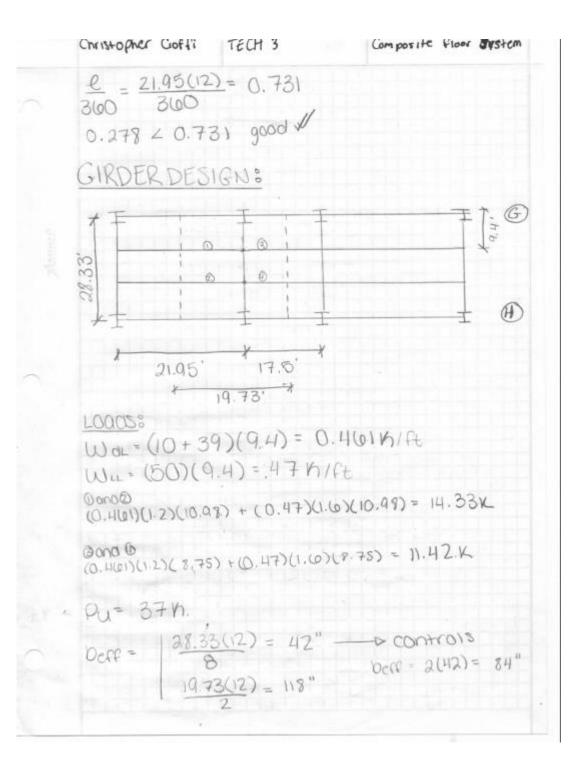

PT TWO WAY SLAB

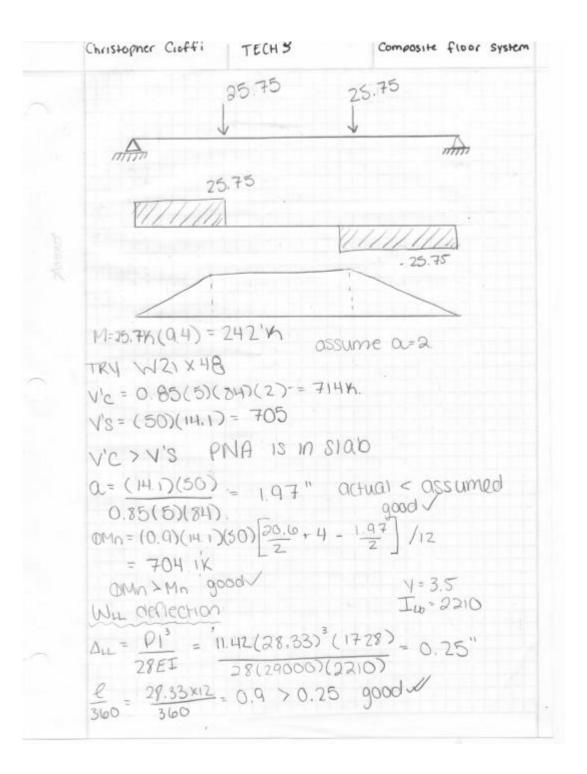
Alternative System: Composite Floor System

COMPOSITE FLOOR DESIGN

COMPOSITE FLOOR DESIGN

Christopher Cloffi	TECH 3	Composite floor System
Beam design:		270
Wh=[12(10	+ 39) + 1.6	0(50)]9,4'=1.3KIP
clecku	V	
$V_{U} = \frac{(1.3)(21)}{2}$		
$M_{u} = \frac{w \ell^2}{8} = 0$	0	
TRY a WIC	A -> DIX	$M_{px} = 81.0$ M.
WIO XIG INFOR	mation:	
As= 5.62in2	Ix = 96.31	n" 3
$As = 5.62in^{2}$ $C = 10.2"$ $t_{w} = 0.3 in$ $b_{f} = 5.77in$	$Z_{x} = 21.6ii$	5
berr = 61.95)(12) = 33"	> COntrols
min (9.4)	(12) = 57"	
Dear = lola"		
V'c = 0.85(5)	(66)(2)=	SQIK
V's= (5.02)		
VC 7V'S PM	NA ISIN the	S1010 *
Q= (5.02)(50) = 10"	
(0.85)(5)(
Olochual 2 Q.C	assumed	


COMPOSITE FLOOR DESIGN


COMPOSITE FLOOR DESIGN

Christopher Goffi	TECH 3	amposite floor system
Wu= 1.2(0.3		
$M_{u} = \frac{(1.22)(2)}{8}$		5'MLIMP
73.5 'N < 81		
(use (4) W 10	×12)	
- 151.7	02)(50)[10.2/	$2 - 4 - \frac{1.0}{2}$
= 68.8	50)(50)(10. 51	
68.85K>14	1.27K good.	V
design of	shear stud	05:
L deck		30ie = 17, 2K/stud
V'S=281K <- V'C=561K	ușe min to	gain full strength
$M = \frac{\Sigma \Omega_n}{\Omega_n} = \frac{27}{17}$	<u>81</u> = 16.34 7.2	= 17 Studs
Check live 100	the second se	5 TLb (V=3.57= 304
ALL = 5(0.4	70)(2195")(1-	728) = 0.278"

COMPOSITE FLOOR DESIGN

COMPOSITE FLOOR DESIGN

COMPOSITE FLOOR DESIGN

Christophe	er Cioffi	TECH 3	Co	modshe floor	System
TA Join =	UNShareds (48)(9.4) (50)(9.4) (.2	(19.73) =	8.9 9.3		
$\frac{PL}{4} = 0$	8.2)(28. 4	33) = 12	8 % 4 2=	74'K gooc)
Shear	stuas:				
n= :	705 = 3	38 × 2	= 76 3+	uels/girde	er
	W21×48				
	E WION	2 7	WIDX12	Ŧ	3
	WIOX	12.	W10×12		5
th ALC IN	V/10 v	5	VION IS		Ş
	W IOX	12	- WIDYIE	+	3
		5			
	,				

Cost Analysis and Comparison of the Existing and New Design

Comparison Conditions	Two-Way Slab System with Shear Caps	One-Way Slab with Reinforced Beams	Post-Tension Concrete Two-Way Slab	Composite Decking System with Steel Framing
Slab Self Weight (psf)	100	138	60	39
Slab Depth (Inches)	8	11	8	4
Bay Area (sft)	3500	3500	3500	3500
Weight Per Typ Bay (Kips)	354	484	210	147
Fire rating	2 Hours	2 Hours	2 Hours	2 Hours
Cost Per Sf	\$17.05	\$19.65	\$17.65	\$14.43
Constructability	N/A	Moderate	Moderate	Easy

COST ANALYSIS AND COMPARISON

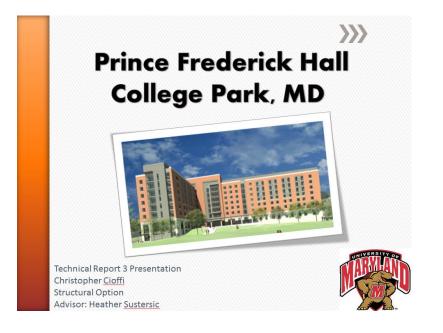
OF THE EXISTING AND NEW DESIGN

Christopher Cioffi TECH3 COST Analysis
COMPORISON OF SYSTEMS CATCULATIONS
PT 2-WON
$\frac{100}{8'' \times 8''} = \frac{\times}{12.12''}$
$\frac{100}{0.4!} = \frac{x}{1'}$
40 lbs/ft + tendons self weight. 40 + 20 = 60 psf
weight analysis: Eper 1 Typical Bay]
2-way 5100-0 -
$\left(\frac{8}{12}\right)(150) = 100psf$
Shear caps -> (生)(150)= 50.psf
TO HAI BOY OFED = $(27.3 + 29.6)(22 + 17.5 + 22)$ = 35005F
Shear COP 0(90 = $(10.5sF \times 2) + \frac{1}{2}(10.5 \times 10)$ = 73.5sf
W = 3500(100) + 50(73.5)

.

COST ANALYSIS AND COMPARISON

OF THE EXISTING AND NEW DESIGN

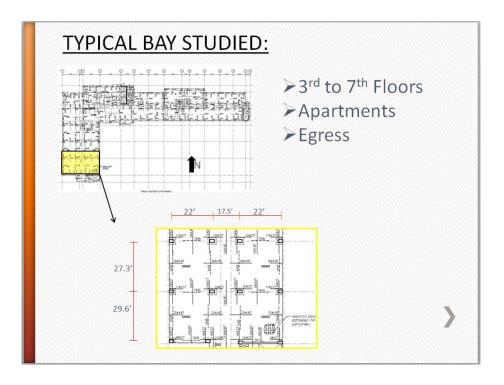

Christopher Cioffi	TECH 3	Cost Analysis	
1 way sian -+		0 12 2 0	
SIQO = (11) (150) = 137.5	psf = 138psf	
beam = $\left(\frac{27}{12}\right)(1)$			
3500(138)=	483 KIPS		
beams = $4\left(\frac{19^{"}}{12}\right)$	(27.3) = 0.	17	
$+ 4(\frac{19}{12})($	21.37 = 0.	18	
PT 2WOY SIDE	0		
3500 × 60 =	210 KIPS		
composite dec	68		
000K = (39)(3)	\sim	0.56	
Bcoms = (8)(10)	12(2105)=	3.3K	
147/10	N(17.5) =	1.0%	
(47(48	1(28.33)-	5.5K.	
	= 11	17KIDS.	
1			
			-

COST ANALYSIS AND COMPARISON

OF THE EXISTING AND NEW DESIGN

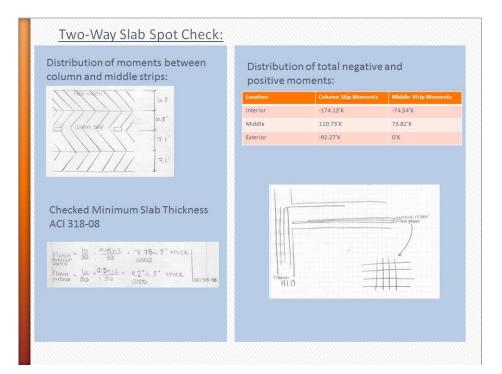
	Christopher Cioth TEC	H3	Cost Analysis
	companson of co	ST:	
	TWO WAY JIAO WI AN RS MEAN ITEM 52 BOY SIZE \$ 25×30 COST = 17.05/SPt	100	
Shower	ONE WAY STAD: RS MEAN ITEM 7 BON SIZE & 30 × 35 COST = 19.65 /SF	4600 t	
~ `	COMPOSITE DECK: RSMEAN ITEM 340 BOY SIZE \$ 25×30 COST = 17.65 /SPC	0	
	PT Z- WOY SIDD RS MEAN BAY SIZE \$25' × 30 COST =14.43	5	
	, , , ,		

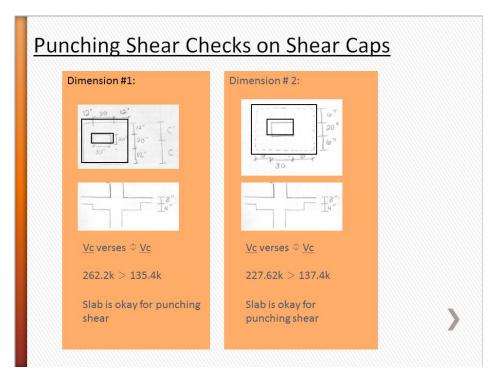
POWER POINT PRESENTATION

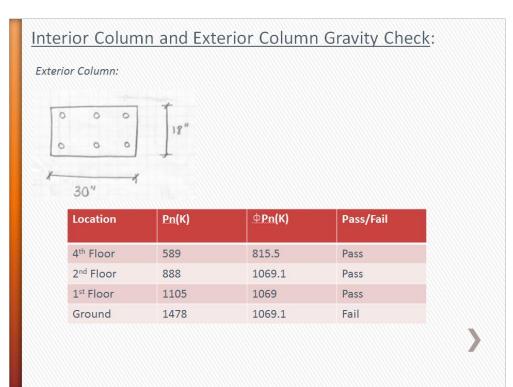


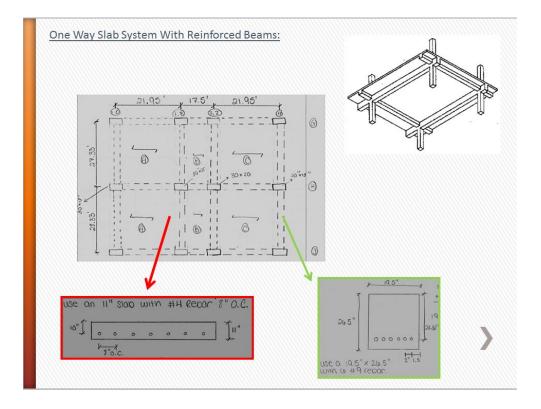
General Information:

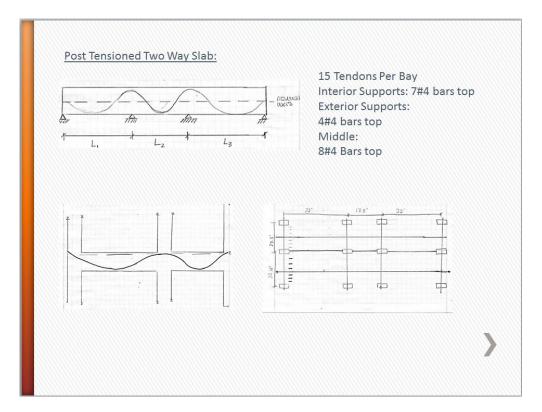
- » Location: College Park, Maryland
- » Occupancy: Multi-Purpose Dormitory
- » Size: 185,0000 Gross Square Feet
- » Architect: WDG Architecture
- » CM: Clark Construction
- » Structural: Cagley and Associates

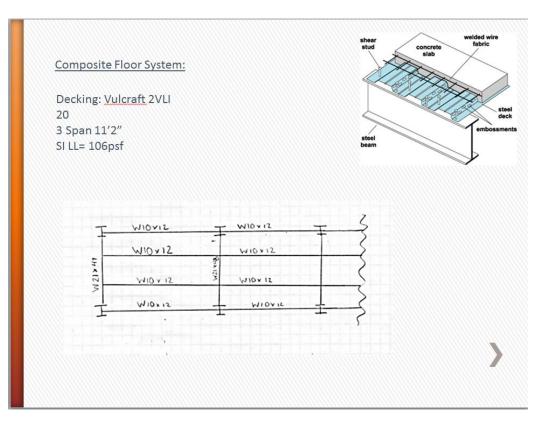




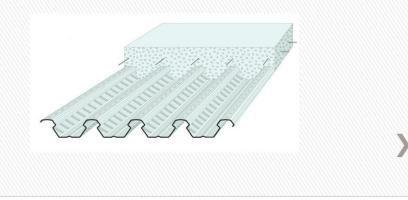

Existing System:


- » 2 way flat plate slab with shear caps
- » 8" Slab
- » 4" shear caps around columns extending 6" on each side
- » #4 Rebar Bottom Mat spaced 21" o.c. both directions





Inte	erior Colum	n and Exte	erior Colum	n Gravity (<u>Check</u> :	
h	nterior (H1.8)					
ð	"I 30"]20"				
	Location	Pn(K)	ФРn(K)	Pass/Fail		
	4 th Floor	839.2	1296.3	Pass		
	2 nd Floor	1244.7	1557.92	Pass		
	1 st Floor	1606	2531.7	Pass		
	Ground	1901.3	2531.7	Pass		
						>


Cost Analysis:

Comparison Conditions	Two-Way Slab System with Shear Caps	One-Way Slab with Reinforced Beams	Post-Tension Concrete Two-Way Slab	Composite Decking System with Steel Framing
Slab Self Weight (psf)	100	138	60	39
Slab Depth (Inches)	8	11	8	4
Bay Area (sft)	3500	3500	3500	3500
Weight Per Typ Bay (Kips)	354	484	210	147
Fire rating	2 Hours	2 Hours	2 Hours	2 Hours
Cost Per Sf	\$17.05	\$19.65	\$17.65	\$14.43
Constructability	N/A	Moderate	Moderate	Easy

Most Feasible Design:

Composite Decking System with Steel Framing

- Maximizes floor to floor height
- Minimum cost per square foot
- Easy to construct
- Takes the least amount of time to construct (time management)
- Weight less- less steel used, smaller column sizes

